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LETTER TO THE EDITOR 

Polymer statistics on a Cayley tree? 

S L A de Queiroz 
Department of Physics, PUC, 22453, Rio de Janeiro, Brazil 

Received 16 June 1981 

Abstract. We study linear and branched polymers on a Cayley tree. We obtain the values of 
the critical monomer fugacity in closed form, for any value of the branching-point fugacity. 
The correlation-length exponent U is found to be 4, through finite-size scaling arguments. 
This gives independent support to the idea that mean-field and Cayley-tree approximations 
are not equivalent. A proposal is made for the behaviour of v against branching-point 
fugacity. 

1. Introduction 

The connection between statistics of polymers and scaling theory of critical phenomena 
has been extensively studied in recent years (see e.g. McKenzie (1976) and references 
therein). Specifically, de Gennes (1972) has shown the equivalence of the n + 0 limit of 
the n-vector model to the statistics of linear polymers, with 1/N, the inverse number of 
monomers, playing the role of T - T,. Since this correspondence has been established, 
researchers have been provided with further confidence to apply methods initially 
devised for the description of thermal critical phenomena to the study of the large-N 
properties of polymers. In particular, models in which no explicit reference is made to 
the n .j 0 trick have been successful in accounting for properties of both linear (Shapiro 
1978, de Queiroz and Chaves 1980) and branched (Family 1980) polymers, in the 
high-temperature, zero-concentration limit. In this limit, one has a single polymer 
subject only to geometrical constraints expressed by the non-intersecting or self- 
avoiding walk (SAW) condition (McKenzie 1976). The grand canonical partition 
function, or generating function, is given by 

r (p)  = C anpn (1) 
n 

for a linear polymer, where a, is the number of n-step SAWS starting at a given point of a 
regular lattice, and p is the fugacity per monomer. For branched polymers, one has to 
take into account the existence of branching points, and this can be done in two ways, 
either by assigning a branchingprobability to each site on the lattice (Family 1980) or by 
introducing afugacity for branching points (Lubensky 1978). Here we make use of the 
latter approach, and shall comment on it below. 

The Cayley tree (CT) is not a realistic lattice, in the sense that its topology does not 
allow the existence of rings of bonds; in what concerns polymer statistics, the SAW 

condition is already fulfilled from the beginning, provided we do not take backward 
steps into account. However, it makes perfect sense to define structures governed by 
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generating functions such as equation (1) and ask questions as to what tiappens in the 
large-N limit. The answers to these questions may provide us with useful insight into 
the behaviour of similar systems constrained to physically realisable lattices. 

Further, it is interesting to discuss the usually accepted statement that a Cayley tree 
is equivalent to an infinite-dimensional lattice, whence mean-field (MF) results would 
apply. This is true for critical exponents in the percolation problem (Stauffer 1979), 
although Nakanishi and Stanley (1981) have already pointed out differences in the 
scaling function for percolation on the Cayley tree and in the MF approximation, the 
former becoming equivalent to the latter only as the coordination number approaches 
infinity. For linear polymers, it is known that critical exponents differ in either case 
(McKenzie 1976), and as we shall show below, we expect this distinction to hold also for 
branched polymers. 

We now review briefly the statistics of linear polymers as a Cayley tree. We denote 
by ‘a-tree’ a Cayley tree in which each site is connected to (T + 1 sites. In this case, 
equation (1) is written 

r( p )  = p + rp + 2 p  + . , , = p /  (1 - (2) 

p c  = l/a. (3) 

Criticality is identified with the divergence of r ( p ) ,  so the critical fugacity is 

This is the same as the critical probability for the percolation problem on a Cayley tree 
(Fisher and Essam 1961). The coincidence arises because, in what concerns the infinite 
percolation cluster, it does not matter whether ‘dangling’ bonds are present or absent. 

We define the critical exponent y through 

r(P) - (Pc-P)-’ (P’PC) (4) 

(Redner and Reynolds 198 l), and the correlation-length exponent v, which measures 
the divergence of the average end-to-end distance R ( p )  as 

R ( p )  - ( P c - P ) - ”  (P’PC) ( 5 )  

(Shapiro 1978, de Queiroz and Chaves 1980). A suitable definition for end-to-end 
distance of linear polymers on a Cayley tree is simply the number of monomers present 
in the chain, so that we have in this case 

Hence we obtain from (2) and (6) 

y = v = l *  (7) 

Results (3) and (7) are quoted in McKenzie (1976). 
We now turn to branched polymers and allow for the existence of branching uniu. 

Following Lubensky (1978), R fugacity A is attributed to each f-functional unit, so that 
the corresponding weight Apf is included in the generating function. We have per- 
formed calculations with different functionalities, all yielding the same qualitative 
results, hence we shall restrict ourselves to f = a in what follows. 

It is easy to see that the following recursion relation holds between finite trees with N 
and N + 1 generations respectively: 

~ N + I ( P ,  A)=p( l+Ap“XG+~pXiv)  (8) 
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where 

XN = 1 + Ap"X&-1 + UpxN-1, x o  = 0,  (9) 
and r N ( P ,  A) is the generating function for a finite, N-generation tree. This can be 
visualised by recalling that 

F l ( P ,  A) = p ,  r 2 ( P ,  A) = p ( l  +AP4 +w), r 3 ( P ,  A) 
= p [  1 + Ap"(1 + Ap" +ap)" + a p ( l  + Ap" + ap)] 

etc. Here the zero-bond cluster, which does not contribute to the non-analyticities of 
r ( p ,  A), is not taken into account. We have 

and 

in accordance with (2). 
Criticality is given by regarding p and A as parameters for X ( p ,  A) and imposing 

X N + l ( p c ,  A ) = x N ( p c ,  A ) = X *  ( N  + a) (12) 
and 

where we take A as fixed; (9) and (12) then yield 

A 
p c  = ff[ 1 + (( 

) l'"] -l, 

ff - 1y-1 

Again we have p c ( A  = 0) = l/a. Further, for a = 2, the coefficients of r ( p ,  1) = Z aspS  
give the number of s-bond Cayley trees per bond of a Bethe lattice, which approaches 
[vu/((+ - l)'-l]s as s + o;, (Fisher and Essam 1961, Essam and Gwilym 1971). Indeed, 
(13) gives p c  = a in this case, in agreement with the criticality condition p p ,  = 1, where p 
is the effective connective constant of the lattice (McKenzie 1976). 

We now turn to the calculation of the critical exponent U. Applying finite-size 
scalingarguments (Fisher 1971, Sur eta1 1976, Reynolds e ta l l980)  to the present case, 
the critical fugacity for a finite tree with N generations varies with N as 

( p c ( N ) - p c ) - N - l ' "  (14) 
where p c  = limN+- p, (N)  is given by (13). p, (N)  is defined as the value of p for which r N  

diverges, the A-dependence being implicitly understood, and can be located within very 
good accuracy. For example, rloo(p, 0.5) goes from -lo5 to -10l8 for a p-variation of 
6 x close enough to ~ ~ ( 1 0 0 ) .  At greater values of N, the divergence is far steeper, 
allowing a precise location of p, (N)  to one part in lo'. As can be seen from figure 1, 
p, (N)  indeed approaches p c  quite rapidly as N increases. 

Our data are consistent with a value of U = f, which differs from the MF result for 
branched polymers (Lubensky 1978, Redner 1979), V M F  = 5. As in the case of linear 
polymers, where U = 1 for Cayley trees and U M F  = $ (McKenzie 1976), the CT value of U 

1 



L342 Letter to the Editor 
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Figure 1. p, (N)  - p c  against N for A = (full circles) and A = 0.5 (open circles). The 
straight lines have slope = -2 and serve as guides for the eye. Here U = 2. Errors are of the 
order of the size of the circles, or smaller. 

doubles the mean-field result. Although it is not surprising that MF and CT approxima- 
tions give different results, it remains to be explained why vCT/vMVIF = 2 both for linear 
and branched polymers. 

It can be seen from figure 1 that v = 3 fits our finite-size scaling results very well. We 
have plotted data for A = and A = 0.5, which are the extreme values used in our 
calculations, corresponding roughly to ‘low’ and ‘high’ degrees of branching. Note that 
the curve for A = approaches the straight line with slope -2 slower than the A = 0.5 
curve: it takes greater values of N until the effect of branching appears explicitly in the 
former case rather than in the latter. As the behaviour of the curves is continuous in A, 
we have not plotted data for intermediate values of the branching-point fugacity. 

Further, we should like to note that, as A + 00, only configurations that cover the 
lattice entirely are present, hence the number of bonds necessary in order to build an 
N-generation tree is 

(15) 

As the end-to-end distance of an N-generation tree is R = N (see the paragraph 
preceding equation (6 )  above), one has 

Nb = (aN - l ) / ( U  - 1). 

R -1g Nb (N, Nb + O0>. (16) 
As R - NbY (McKenzie 1976), we can say that v = 0 (A + 00). 
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Since we have not found evidence that v varies for finite, non-zero values of A, it is 
reasonable to conjecture that the behaviour of the correlation-length exponent for 
polymers on a Cayley tree is 

A = O  
v =  1 A # 0, finite (17) 1' O ( k )  h+m. 

We note that a discontinuous change in v as one goes from linear to branched 
polymers has also been found by Family (1980) for a two-dimensional lattice, within the 
context of a two-parameter position-space renormalisation group. In other words, 
linear and branched polymers belong to different universality classes. 

We have studied the statistics of linear and branched polymers on a Cayley tree. The 
existence of branching points has been included through a branching-point fugacity, A. 
Although in the limit of low degree of branching, this coincides to first order with a 
probabilistic interpretation, it is not clear whether both approaches yield the same 
results for higher concentrations of polyfunctional units. In particular, for finite- 
dimensional lattices the possibility arises that an uncorrelated probabilistic treatment of 
branching leads implicitly to the inclusion of loop formation in the statistics. In the 
present case, a fugacity approach yields correct results in the U = 2, A = 1 limit discussed 
above, which would not happen had we treated branching points probabilistically and 
considered the limit of branching probability = 1. 

We have made use of finite-size scaling arguments in order to find the correlation- 
length exponent v for branched polymers on a Cayley tree. Our results are consistent 
with v = 3, different from the mean-field value v M F  = $. This gives independent support 
to the idea that MF and CT approximations are not equivalent in principle, although in 
some cases they may give the same results, as happens for the critical exponents of 
percolation. 

Finally, we propose that the value of v on a Cayley tree changes abruptly from v = 1 
(A = 0, linear polymers) to v = 1 (A # 0, finite, branched polymers) and that it equals 
zero (logarithmic divergence) as A grows infinitely large. 

The author would like to thank Drs B Koiller and C Tsallis for interesting con- 
versations, and Dr C M Chaves for a critical reading and detailed comments on the 
manuscript. 
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